Two-regular subgraphs of hypergraphs

نویسندگان

  • Dhruv Mubayi
  • Jacques Verstraëte
چکیده

We prove that the maximum number of edges in a k-uniform hypergraph on n vertices containing no 2-regular subhypergraph is ( n−1 k−1 ) if k ≥ 4 is even and n is sufficiently large. Equality holds only if all edges contain a specific vertex v. For odd k we conjecture that this maximum is ( n−1 k−1 ) + bn−1 k c, with equality only for the hypergraph described above plus a maximum matching omitting v.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-star Factors in Random D-regular Graphs

The small subgraph conditioning method first appeared when Robinson and the second author showed the almost sure hamiltonicity of random d-regular graphs. Since then it has been used to study the almost sure existence of, and the asymptotic distribution of, regular spanning subgraphs of various types in random d-regular graphs and hypergraphs. In this paper, we use the method to prove the almos...

متن کامل

Maximum hypergraphs without regular subgraphs

We show that an n-vertex hypergraph with no r-regular subgraph has at most 2n−1 + r− 2 edges. We conjecture that if n > r, then every n-vertex hypergraph with no r-regular subgraph having the maximum number of edges contains a full star, that is, 2n−1 distinct edges containing a given vertex. We prove this conjecture for n ≥ 425. The condition that n > r cannot be weakened.

متن کامل

Counting subgraphs in quasi-random 4-uniform hypergraphs

A bipartite graph G = (V1 ∪ V2, E) is (δ, d)-regular if ̨̨ d− d(V ′ 1 , V ′ 2 ) ̨̨ < δ whenever V ′ i ⊂ Vi, |V ′ i | ≥ δ|Vi|, i = 1, 2.Here, d(V ′ 1 , V ′ 2 ) = e(V ′ 1 , V ′ 2 )/|V ′ 1 ||V ′ 2 | stands for the density of the pair (V ′ 1 , V ′ 2 ). An easy counting argument shows that if G = (V1 ∪ V2 ∪ V3, E) is a 3-partite graph whose restrictions on V1 ∪V2, V1 ∪V3, V2 ∪V3 are (δ, d)regular, then ...

متن کامل

An algorithmic hypergraph regularity lemma

Szemerédi’s Regularity Lemma [22, 23] is a powerful tool in graph theory. It asserts that all large graphs G admit a bounded partition of E(G), most classes of which are bipartite subgraphs with uniformly distributed edges. The original proof of this result was non-constructive. A constructive proof was given by Alon, Duke, Lefmann, Rödl and Yuster [1], which allows one to efficiently construct...

متن کامل

OPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD

In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2009